Answer
$f^3+5f^2+12f+8$.
Work Step by Step
The given expression is
$=(f+1)(f^2+4f+8)$
Distribute $(f^2+4f+8)$ to each term of $(f+1)$.
$=f(f^2+4f+8)+1(f^2+4f+8)$
Use distributive property.
$=f(f^2)+f(4f)+f(8)+1(f^2)+1(4f)+1(8)$
Multiply.
$=f^3+4f^2+8f+f^2+4f+8$
Combine like terms.
$=f^3+5f^2+12f+8$
Hence, the product is $f^3+5f^2+12f+8$.