Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 6 - Exponential Functions and Sequences - 6.5 - Solving Exponential Equations - Exercises - Page 329: 11

Answer

$x=3$

Work Step by Step

The given equation is $\Rightarrow 64^{2x+4}=16^{5x}$ Rewrite $64$ as $4^3$ and $16$ as $4^2$. $\Rightarrow (4^3)^{2x+4}=(4^2)^{5x}$ Use $(a^n)^m=a^{n\cdot m}$ $\Rightarrow 4^{3(2x+4)}=4^{2(5x)}$ Simplify. $\Rightarrow 4^{6x+12}=4^{10x}$ Equate the exponents. $\Rightarrow 6x+12=10x$ Subtract $6x$ from each side. $\Rightarrow 6x+12-6x=10x-6x$ Simplify. $\Rightarrow 12=4x$ Divide each side by $4$. $\Rightarrow \frac{12}{4}=\frac{4x}{4}$ Simplify. $\Rightarrow 3=x$ Check: $(x=3)$ $\Rightarrow 64^{2x+4}=16^{5x}$ $\Rightarrow 64^{2(3)+4}=16^{5(3)}$ $\Rightarrow 64^{6+4}=16^{15}$ $\Rightarrow 64^{10}=16^{15}$ $\Rightarrow 1.1529215e+18=1.1529215e+18$ True. Hence, the solution is $x=3$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.