Big Ideas Math - Algebra 1, A Common Core Curriculum

Published by Big Ideas Learning LLC
ISBN 10: 978-1-60840-838-2
ISBN 13: 978-1-60840-838-2

Chapter 4 - Writing Linear Functions - 4.1-4.3 - Quiz - Page 194: 10

Answer

Line $b$ is perpendicular to line $a$.

Work Step by Step

Line $a:$ Let $(x_1,y_1)=(-2,2)$ and $(x_2,y_2)=(2,1)$ Slope $\Rightarrow m_a=\frac{y_2-y_1}{x_2-x_1}$ Substitute all the values. $\Rightarrow m_a=\frac{1-2}{2-(-2)}$ Simplify. $\Rightarrow m_a=\frac{-1}{2+2}$ $\Rightarrow m_a=-\frac{1}{4}$ Line $b:$ Let $(x_1,y_1)=(1,-8)$ and $(x_2,y_2)=(3,0)$ Slope $\Rightarrow m_b=\frac{y_2-y_1}{x_2-x_1}$ Substitute all the values. $\Rightarrow m_b=\frac{0-(-8)}{3-1}$ Simplify. $\Rightarrow m_b=\frac{8}{2}$ $\Rightarrow m_b=4$ Line $c:$ Let $(x_1,y_1)=(-4,-3)$ and $(x_2,y_2)=(0,-2)$ Slope $\Rightarrow m_c=\frac{y_2-y_1}{x_2-x_1}$ Substitute all the values. $\Rightarrow m_c=\frac{-2-(-3)}{0-(-4)}$ Simplify. $\Rightarrow m_c=\frac{-2+3}{0+4}$ $\Rightarrow m_c=\frac{1}{4}$ Line $b$ has a slope of $4$, the negative reciprocal of $-\frac{1}{4}$, so it is perpendicular to line $a$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.