Answer
$x=\pm \sqrt {2y+14}$
When output $y=2$, input $x=\pm3\sqrt 2$
Work Step by Step
$y=\frac{1}{2}x^{2}-7$
Add $7$ to both sides of the equation to get
$y+7=\frac{1}{2}x^{2}$
Multiplying by $2$ on both the sides, we obtain
$2y+14=x^{2}$
Taking square root on both the sides, we have
$x=\pm \sqrt {2y+14}$
When output $y=2$,
Input $x=\pm\sqrt {2(2)+14}=\pm3\sqrt 2$