Answer
$A=81.97°$
$B=8.03°$
$C=90°$
$a=9.36$
$b=1.32$
$c=9.45$
Work Step by Step
$c^2=a^2+b^2$
$9.45^2=a^2+1.32^2$
$a^2=9.45^2-1.32^2$
$a=\sqrt {9.45^2-1.32^2}=9.357355$
$sin~A=\frac{opp}{hyp}=\frac{a}{c}=\frac{9.357355}{9.45}$
$A=arcsin(\frac{9.357355}{9.45})=81.97°$
$sin~B=\frac{opp}{hyp}=\frac{b}{c}=\frac{1.32}{9.45}$
$B=arcsin(\frac{1.32}{9.45})=8.03°$
$C=90°$ because it is a right triangle.