Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - Review Exercises - Page 233: 12

Answer

a) $y=-\dfrac{2}{3}x-\dfrac{7}{3}$ b) $y=\dfrac{3}{2}x+15$

Work Step by Step

We are given: Line $d$: $2x+3y=5$ $(-8,3)$ Determine the slope $m_d$ of the given line: $2x-5=-3y$ $y=-\dfrac{2}{3}x+\dfrac{5}{3}$ $m_d=-\dfrac{2}{3}$ a) Let $d_1$ be a line parallel to line $d$. We have: $m_1=m_d=-\dfrac{2}{3}$ Determine the line $d_1$ using the slope $m_1$ and the point $(-8,3)$: $y-3=-\dfrac{2}{3}(x+8)$ $y-3=-\dfrac{2}{3}x-\dfrac{16}{3}$ $y=-\dfrac{2}{3}x-\dfrac{16}{3}+3$ $y=-\dfrac{2}{3}x-\dfrac{7}{3}$ b) Let $d_2$ be a line perpendicular to the line $d$. We have: $m_2\cdot m_d=-1$ $m_2\cdot \left(-\dfrac{2}{3}\right)=-1$ $m_2=\dfrac{3}{2}$ Determine the line $d_2$ using the slope $m_2$ and the point $(-8,3)$: $y-3=\dfrac{3}{2}(x+8)$ $y-3=\dfrac{3}{2}x+12$ $y=\dfrac{3}{2}x+12+3$ $y=\dfrac{3}{2}x+15$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.