Algebra and Trigonometry 10th Edition

Published by Cengage Learning
ISBN 10: 9781337271172
ISBN 13: 978-1-33727-117-2

Chapter 2 - Review Exercises - Page 233: 11

Answer

a) $y=\dfrac{5}{4}x-\dfrac{23}{4}$ b) $y=-\dfrac{4}{5}x+\dfrac{2}{5}$

Work Step by Step

We are given: Line $d$: $5x-4y=8$ $(3,-2)$ Determine the slope $m_d$ of the given line: $5x-8=4y$ $y=\dfrac{5}{4}x-2$ $m_d=\dfrac{5}{4}$ a) Let $d_1$ be a line parallel to line $d$. We have: $m_1=m_d=\dfrac{5}{4}$ Determine the line $d_1$ using the slope $m_1$ and the point $(3,-2)$: $y-(-2)=\dfrac{5}{4}(x-3)$ $y+2=\dfrac{5}{4}x-\dfrac{15}{4}$ $y=\dfrac{5}{4}x-\dfrac{15}{4}-2$ $y=\dfrac{5}{4}x-\dfrac{23}{4}$ b) Let $d_2$ be a line perpendicular to the line $d$. We have: $m_2\cdot m_d=-1$ $m_2\cdot \dfrac{5}{4}=-1$ $m_2=-\dfrac{4}{5}$ Determine the line $d_2$ using the slope $m_2$ and the point $(3,-2)$: $y-(-2)=-\dfrac{4}{5}(x-3)$ $y+2=-\dfrac{4}{5}x+\dfrac{12}{5}$ $y=-\dfrac{4}{5}x+\dfrac{12}{5}-2$ $y=-\dfrac{4}{5}x+\dfrac{2}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.