Answer
(a) $V(3)=36\pi$
(b) $V(\frac{3}{2})=\frac{9}{2}\pi$
(c) $V(2r)=\frac{32}{3}\pi r ^3 $
Work Step by Step
$V(r)=\frac{4}{3}\pi r^3$
(a) $V(3)=\frac{4}{3}\pi (3^3)=\frac{4}{3}\pi (27)=36\pi$
(b) $V(\frac{3}{2})=\frac{4}{3}\pi (\frac{3}{2})^3=\frac{4}{3}\pi (\frac{27}{8})=\frac{9}{2}\pi$
(c) $V(2r)=\frac{4}{3}\pi (2r)^3=\frac{4}{3}\pi (8r^3)=\frac{32}{3}\pi r^3$