Answer
No inverse is possible. (Not Invertible)
Work Step by Step
The general form of a matrix of order $ 2 \times 2$ is:
$det \ A=\begin{bmatrix} p & q \\ r & s\end{bmatrix}=ps-qr$
We can determine the inverse of matrix $A$ as follows: $A^{-1}=\dfrac{1}{det \ A} \begin{bmatrix} s & -q \\ -r & p\end{bmatrix}$
Now, $det \ A =\begin{bmatrix} -18 & -15 \\ -6 & -5 \end{bmatrix}=90-90= 0$
This means that no inverse is possible.