Answer
Focus: $\left(0,3\right)$
Directrix: $y=-3$
Axis of symmetry: $y$-axis
Work Step by Step
$\bf{Step\text{ }1}$
The equation is in standard form:
$$x^2=12y.$$
$\bf{Step\text{ }2}$
We identify the focus, directrix and axis of symmetry. The equation has the form $x^2=4py$, where $p=3$. The $\bf{focus}$ is $(0,p)$ or $\left(0,3\right)$. The $\bf{directrix}$ is $y=-p$ or $y=-3$. Because $x$ is squared, the $\bf{axis\text{ } of\text{ }symmetry}$ is the $y$-axis.
$\bf{Step\text{ }3}$
We $\bf{draw}$ the parabola by making a table of values and plotting points. As $p>0$, the parabola opens upward.
\[ \begin{array}{cccccc}
x &|& \pm 1 &|& \pm 2 &|& \pm 3 &|& \pm4 &|& \pm 5 &|&\\
y &|& 0.08 &|& 0.33 &|& 0.75 &|& 1.33 &|& 2.08 &|&\\
\end{array}\]
Focus: $\left(0,3\right)$
Directrix: $y=-3$
Axis of symmetry: $y$-axis