Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 8 Rational Functions - 8.5 Add and Subtract Rational Expressions - 8.5 Exercises - Skill Practice - Page 586: 29

Answer

$$\frac{8x^3-9x^2-28x+8}{x\left(x-4\right)\left(3x-1\right)}$$

Work Step by Step

Simplifying the expression by creating like denominators, we find: $$\frac{\left(x+2\right)x\left(3x-1\right)}{\left(x-4\right)x\left(3x-1\right)}+\frac{2\left(x-4\right)\left(3x-1\right)}{x\left(x-4\right)\left(3x-1\right)}+\frac{5x^2\left(x-4\right)}{x\left(x-4\right)\left(3x-1\right)} \\ \frac{\left(x+2\right)x\left(3x-1\right)+2\left(x-4\right)\left(3x-1\right)+5x^2\left(x-4\right)}{x\left(x-4\right)\left(3x-1\right)} \\ \frac{8x^3-9x^2-28x+8}{x\left(x-4\right)\left(3x-1\right)}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.