Answer
$$\frac{8x^3-9x^2-28x+8}{x\left(x-4\right)\left(3x-1\right)}$$
Work Step by Step
Simplifying the expression by creating like denominators, we find:
$$\frac{\left(x+2\right)x\left(3x-1\right)}{\left(x-4\right)x\left(3x-1\right)}+\frac{2\left(x-4\right)\left(3x-1\right)}{x\left(x-4\right)\left(3x-1\right)}+\frac{5x^2\left(x-4\right)}{x\left(x-4\right)\left(3x-1\right)} \\ \frac{\left(x+2\right)x\left(3x-1\right)+2\left(x-4\right)\left(3x-1\right)+5x^2\left(x-4\right)}{x\left(x-4\right)\left(3x-1\right)} \\ \frac{8x^3-9x^2-28x+8}{x\left(x-4\right)\left(3x-1\right)}$$