Answer
5.9 weeks
Work Step by Step
Given: $h(t)=\frac{256}{1+13e^{-0.65t}}$
Substituting $h=200$, we have:
$h(t)=\frac{256}{1+13e^{-0.65t}}\\
1+13e^{-0.65t}=\frac{256}{200}\\13e^{-0.65t}=\frac{7}{25}\\
e^{-0.65t}=\frac{7}{325}\\\ln (e^{-0.65t})=\ln(\frac{7}{325})\\-0.65t=\ln(\frac{7}{325})\\t\approx5.9045\approx5.9$