Answer
2.7999 cm
Work Step by Step
$I(x)=I_0e^{-\mu x}$
Solve for x: $\ln I=\ln(I_0e^{-\mu x})=\ln I_0+\ln e^{-\mu x}\\
\rightarrow -\mu x=\ln I-\ln I_0\\ \rightarrow x=-\frac{\ln\frac{I}{I_0}}{\mu}$
Substitute $I=0.3I_0\\\mu=0.43$
We have: $x=-\frac{\ln\frac{0.3I_0}{I_0}}{0.43}=-\frac{-\ln 0.3}{0.43}\approx 2.7999$