Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 7 Exponential and Logarithmic Functions - 7.6 Solve Exponential and Logarithmic Equations - 7.6 Exercises - Problem Solving - Page 522: 60a

Answer

2.7999 cm

Work Step by Step

$I(x)=I_0e^{-\mu x}$ Solve for x: $\ln I=\ln(I_0e^{-\mu x})=\ln I_0+\ln e^{-\mu x}\\ \rightarrow -\mu x=\ln I-\ln I_0\\ \rightarrow x=-\frac{\ln\frac{I}{I_0}}{\mu}$ Substitute $I=0.3I_0\\\mu=0.43$ We have: $x=-\frac{\ln\frac{0.3I_0}{I_0}}{0.43}=-\frac{-\ln 0.3}{0.43}\approx 2.7999$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.