Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 6 Rational Exponents and Radical Functions - 6.2 Apply Properties of Rational Exponents - 6.2 Exercises - Quiz for Lessons 6.1-6.2 - Page 427: 15

Answer

$10+6\sqrt 5$

Work Step by Step

The perimeter of the triangle $AMN$ is: $$P_{\triangle AMN}=AM+MN+NA.\tag1$$ Determine $AM$ using the Pythagorean theorem in the triangle $ABM$: $$\begin{align*} AM^2&=AB^2+BM^2\\ AM&=\sqrt{8^2+4^2}=\sqrt{80}=4\sqrt 5. \end{align*}$$ Determine $MN$ using the Pythagorean theorem in the triangle $MCN$: $$\begin{align*} MN^2&=CM^2+CN^2\\ MN&=\sqrt{4^2+2^2}=\sqrt{20}=2\sqrt 5. \end{align*}$$ Determine $NA$ using the Pythagorean theorem in the triangle $NDA$: $$\begin{align*} NA^2&=ND^2+DA^2\\ NA&=\sqrt{(8-2)^2+8^2}=\sqrt{100}=10. \end{align*}$$ We substitute the values of $AM$, $MN$ and $NA$ in equation$(1)$: $$P_{\triangle AMN}=4\sqrt 5+2\sqrt 5+10=10+6\sqrt 5.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.