Answer
Graph A
Work Step by Step
Given: $f(x)=x^3-3x^2+2$
The leading coefficients: $\pm 1$
The constant terms: $\pm 1, \pm 2$
The possible rational zeros are: $\pm\frac{1}{1},\pm \frac{2}{1}$
Find the solution of the equation: $x=\frac{-b \pm \sqrt b^2-4ac}{2a}=\frac{-(-1)\pm \sqrt (-1)^2-4.1.1}{2(1)}=\frac{1\pm\sqrt -3}{2}=\frac{1\pm i\sqrt 3}{2}$
So, the other real zero is $-2$
The correct answer is A.