Answer
Graph C
Work Step by Step
Given: $f(x)=x^3-3x^2+2$
The leading coefficients: $\pm 1$
The constant terms: $\pm 1, \pm 2$
The possible rational zeros are: $\pm\frac{1}{1},\pm \frac{2}{1}$
Find the solution of the equation: $x=\frac{-b \pm \sqrt b^2-4ac}{2a}=\frac{-(-2)\pm \sqrt (-2)^2-4.1.(-2)}{2(1)}=\frac{2\pm\sqrt 12}{2}=\frac{2\pm2\sqrt 3}{2}=1\pm\sqrt 3$
So, the other zeros are $1+\sqrt 3$ and $1-\sqrt 3$.
The correct answer is C