Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.6 Find Rational Zeroes - 5.6 Exercises - Skill Practice - Page 374: 9

Answer

$\pm1, \pm3, \pm5, \pm 15,\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2},\pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{15}{4},\pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{5}{8}, \pm \frac{15}{8}$

Work Step by Step

Given: $f(x)=8x^4+4x^3-10x+15$ Factors of the constant term: $\pm 1, \pm 3, \pm 5, \pm 15$ Factors of the leading coefficient: $\pm 1, \pm 2, \pm 4, \pm 8$ Possible rational zeros: $\pm \frac{1}{1}, \pm \frac{3}{1}, \pm \frac{5}{1}, \pm \frac{15}{1},\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2},\pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{15}{4},\pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{5}{8}, \pm \frac{15}{8}$ Simplified list of possible zeros: $\pm1, \pm3, \pm5, \pm 15,\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2},\pm \frac{1}{4}, \pm \frac{3}{4}, \pm \frac{5}{4}, \pm \frac{15}{4},\pm \frac{1}{8}, \pm \frac{3}{8}, \pm \frac{5}{8}, \pm \frac{15}{8}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.