Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.6 Find Rational Zeroes - 5.6 Exercises - Skill Practice - Page 374: 20

Answer

$-1, \frac{3}{2},\frac{5}{2}$

Work Step by Step

We are given the polynomial function: $$f(x)=4x^3-12x^2-x+15.$$ $\bf{Step\text{ }1}$ First we will list the possible rational zeros. The leading coefficient is $4$ and the constant term is $15$. So the possible rational zeros are: $$\pm 1,\pm3,\pm 5,\pm 15,\pm \dfrac{1}{2},\pm \dfrac{3}{2},\pm \dfrac{5}{2},\pm \dfrac{15}{2},\pm \dfrac{1}{4},\pm \dfrac{3}{4},\pm \dfrac{5}{4},\pm \dfrac{15}{4}.$$ $\bf{Step\text{ }2}$ Choose reasonable values from the list using the graph of the function. We find the reasonable values are: $$x=-1, x=-\dfrac{3}{4}, x=\dfrac{3}{2},x=\dfrac{5}{4}, x=\dfrac{5}{2}$$ $\bf{Step\text{ }3}$ Check the values using synthetic division until a zero is found: Test $x=-1$: Because we got that the remainder is $0$, $-1$ is a zero of $f$. $\bf{Step\text{ }4}$ Write the result of the synthetic division: $$\begin{align*} f(x)&=(x+1)(4x^2-16x+15).\\ \end{align*}$$ $\bf{Step\text{ }5}$ Find the remaining zeros of $f$ by solving $4x^2-16x+15=0$ using the quadratic formula: $$\begin{align*} x&=\dfrac{-(-16)\pm\sqrt{(-16)^2-4(4)(15)}}{2(4)}\\ &=\dfrac{16\pm 4}{8}\\ x_1&=\dfrac{16-4}{8}=\dfrac{3}{2}\\ x_2&=\dfrac{16+4}{8}=\dfrac{5}{2}. \end{align*}$$ The real zeros of $f$ are $-1, \frac{3}{2},\frac{5}{2}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.