Answer
$(x^{12} y^{16})=(x^{6} y^{8}) \times (x^{6} y^{8}) $
Work Step by Step
Here, we have $(x^{12} y^{16})=(x^1 y^{1}) (x^{11}y^{15})$
This gives:
$(x^{12} y^{16})=x^{2} y^{6} \times x^{10} y^{10}$
or, $(x^{12} y^{16})=(x^{2} y^{6}) \times (x^{10} y^{10})$
Hence, $(x^{12} y^{16})=(x^{6} y^{8}) \times (x^{6} y^{8}) $