Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 5 Polynomials and Polynomial Functions - 5.1 Use Properties of Exponents - 5.1 Exercises - Mixed Review - Page 335: 61

Answer

$$ x=-5 \quad y=7 $$

Work Step by Step

The system can be written as $$ \underbrace{\left[\begin{array}{ll} 1 & 1 \\ 7 & 8 \end{array}\right]}_{\text {Coefficient Matrix }} \cdot\left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} 2 \\ 21 \end{array}\right] $$ Multiply both sides from the left by the inverse of the coefficient matrix. Therefore, the solution is $$ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{ll} 1 & 1 \\ 7 & 8 \end{array}\right]^{-1} \cdot\left[\begin{array}{c} 2 \\ 21 \end{array}\right] $$ The inverse of the matrix $$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right] $$ is $$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right]^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc} d & -b \\ -c & a \end{array}\right] $$ Here $a=1, b=1, c=7, d=8$, and $$ \left[\begin{array}{ll} 1 & 1 \\ 7 & 8 \end{array}\right]^{-1}=\frac{1}{(1)(8)-(1)(7)}\left[\begin{array}{cc} 8 & -1 \\ -7 & 1 \end{array}\right]=\frac{1}{8-7}\left[\begin{array}{cc} 8 & -1 \\ -7 & 1 \end{array}\right]=\left[\begin{array}{cc} 8 & -1 \\ -7 & 1 \end{array}\right] $$ So, $$ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{cc} 8 & -1 \\ -7 & 1 \end{array}\right] \cdot\left[\begin{array}{c} 2 \\ 21 \end{array}\right]=\left[\begin{array}{l} (8)(2)+(-1)(21) \\ (-7)(2)+(1)(21) \end{array}\right]=\left[\begin{array}{c} 16-21 \\ -14+21 \end{array}\right]=\left[\begin{array}{c} -5 \\ 7 \end{array}\right] $$ To write it clearly, $$ \left[\begin{array}{l} x \\ y \end{array}\right]=\left[\begin{array}{c} -5 \\ 7 \end{array}\right] $$ This yields: $$ x=-5 \quad y=7 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.