Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 3 Linear Systems and Matrices - 3.7 Evaluate Determinants and Apply Cramer's Rule - Guided Practice for Examples 1 and 2 - Page 204: 4

Answer

$34$

Work Step by Step

The formula for the area of a triangle with vertices $(x_1,y_1)$, $(x_2,y_2)$, $(x_3,y_3)$ is: $$\text{Area}=\pm\dfrac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}.\tag1$$ We are given the vertices: $$\begin{align*} (x_1,y_1)&=(5,11)\\ (x_2,y_2)&=(9,2)\\ (x_3,y_3)&=(1,3). \end{align*}$$ Apply formula $(1)$ to calculate the area: $$\begin{align*} \text{Area}&=\pm\dfrac{1}{2}\begin{vmatrix}5&11&1\\9&2&1\\1&3&1\end{vmatrix}\\ &=\pm\dfrac{1}{2}[(10+11+27)-(2+15+99)]\\ &=34. \end{align*}$$ The area of the triangle is $34$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.