Answer
$-21$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant is: $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=4(-2\cdot1-(-1)\cdot5)-(-1)(-3\cdot1-(-1)\cdot0)+2(-3\cdot5-(-2)\cdot0)=4(3)+1(-3)+2(-15)=-21$