Answer
$-10$
Work Step by Step
We know that for a matrix
\[
\left[\begin{array}{rrr}
a & b & c \\
d &e & f \\
g &h & i \\
\end{array} \right]
\]
the determinant is $D=a(ei-fh)-b(di-fg)+c(dh-eg).$
Hence here $D=10(-12\cdot2-4\cdot(-7))-(-2)(2\cdot(-2)-4\cdot0)+3(2\cdot(-7)-(-12)\cdot0)=10(4)+2(-4)+3(-14)=-10$