Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 3 Linear Systems and Matrices - 3.7 Evaluate Determinants and Apply Cramer's Rule - 3.7 Exercises - Skill Practice - Page 208: 39b

Answer

$det (kA)=k^2det A$

Work Step by Step

Calculate $kA$: $$\begin{align*} kA&=k\begin{bmatrix}2&-1\\1&2\end{bmatrix}=\begin{bmatrix}2k&-k\\k&2k\end{bmatrix}. \end{align*}$$ Calculate $det A$ and $det (kA)$: $$\begin{align*} det A&=2\cdot 2-1\cdot (-1)=5\\ det (kA)&=2k\cdot (2k)-k\cdot(-k)=5k^2. \end{align*}$$ We notice that $det (kA)=k^2det A$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.