Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 3 Linear Systems and Matrices - 3.7 Evaluate Determinants and Apply Cramer's Rule - 3.7 Exercises - Problem Solving - Page 208: 40

Answer

$447,242$ square miles

Work Step by Step

The formula for the area of a triangle with vertices $(x_1,y_1)$, $(x_2,y_2)$, $(x_3,y_3)$ is: $$\text{Area}=\pm\dfrac{1}{2}\begin{vmatrix}x_1&y_1&1\\x_2&y_2&1\\x_3&y_3&1\end{vmatrix}.\tag1$$ We are given the vertices: $$\begin{align*} (x_1,y_1)&=(938,454)\\ (x_2,y_2)&=(900,-518)\\ (x_3,y_3)&=(0,0). \end{align*}$$ Apply formula $(1)$ to calculate the area: $$\begin{align*} \text{Area}&=\pm\dfrac{1}{2}\begin{vmatrix}938&454&1\\900&-518&1\\0&0&1\end{vmatrix}\\ &=\pm\dfrac{1}{2}[(938(-518)+0+0)-(900\cot 454+0+0)]\\ &=447,242. \end{align*}$$ So the area of the Bermuda Triangle is $447,242$ square miles.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.