Answer
$\dfrac{\sqrt{2+\sqrt 3}}{2}$
Work Step by Step
Double -angle Theorem can be defined as: $\sin \dfrac{\theta}{2}=\pm \sqrt {\dfrac{1- \cos \theta}{2}}$
$\sin (5 \pi/12)=\sin \dfrac{5 \pi/6}{2}$
or, $=\pm \sqrt {\dfrac{1- \cos (5 \pi/6)}{2}}$
Thus, $\sqrt {\dfrac{1- \cos (5\pi/6)}{2}}= \sqrt {\dfrac{1-(-\sqrt 3/2)}{2}}$
or, $=\dfrac{\sqrt{2+\sqrt 3}}{2}$