Answer
$\dfrac{2 \sqrt 5}{5}$
Work Step by Step
Need to divide the interval by $2$:
Thus, we have $ \dfrac{\pi}{4} \lt \dfrac{a}{2} \lt \dfrac{\pi}{2}$
Since $\sin a$ is positive in the First quadrant.
That is, $\sin \dfrac{a}{2} \gt 0$
Thus, $\sin \dfrac{a}{2}= \sqrt {\dfrac{1- \cos a}{2}}= \sqrt {\dfrac{1+(3/5)}{2}}$
$\sin \dfrac{a}{2} =\sqrt {\dfrac{4}{5}}=\dfrac{2 \sqrt 5}{5}$