Answer
$\dfrac{\sqrt{2+\sqrt 2}}{2}$
Work Step by Step
Double -angle Theorem can be defined as: $\cos \dfrac{\theta}{2}=\pm \sqrt {\dfrac{1+ \cos \theta}{2}}$
$\cos (\pi/8)=\cos \dfrac{\pi/4}{2}$
Thus, $\sqrt {\dfrac{1+ \cos (\pi/4)}{2}}= \sqrt {\dfrac{1+(\sqrt 2/2)}{2}}$
and $ \sqrt {\dfrac{1+(\sqrt 2/2)}{2}}=\dfrac{\sqrt{2+\sqrt 2}}{2}$
Hence, $\cos (\pi/8)=\dfrac{\sqrt{2+\sqrt 2}}{2}$