Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.4 Evaluate Inverse Trigonometric Functions - 13.4 Exercises - Quiz for Lessons 13.3-13.4 - Page 880: 9

Answer

$135^{\circ}$ or $\frac{3\pi}{4}$

Work Step by Step

We need to find the value of $\cos^{-1}\left(-\frac{\sqrt 2}{2}\right)$. Since $\cos 45^{\circ}=\frac{\sqrt 2}{2}$ $\hspace2em \Rightarrow -\cos 45^{\circ}=-\frac{\sqrt 2}{2}$ Since $-\cos \theta=\cos(180^{\circ}-\theta)$ $\hspace2em \Rightarrow -\cos 45^{\circ}=\cos(180^{\circ}-45^{\theta})$ $\hspace2em \Rightarrow -\cos 45^{\circ}=\cos135^{\circ}$ Therefore $\cos135^{\circ}=-\frac{\sqrt 2}{2}$. Applying inverse cosine on both sides, we get, $\hspace2em \Rightarrow \cos^{-1}\left(\cos135^{\circ}\right)=\cos^{-1}\left(-\frac{\sqrt 2}{2}\right)$ $\hspace2em \Rightarrow\cos^{-1}\left(-\frac{\sqrt 2}{2}\right)=135^{\circ}$ In radians: $\hspace2em 135^{\circ}=135^{\circ}\times \frac{\pi}{180^{\circ}}=\frac{3\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.