Answer
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{5 \sqrt {74}}{74}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-7 \sqrt {74}}{74}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{-5}{7}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{\sqrt{74}}{5}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=-\dfrac{\sqrt {74}}{7}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=-\dfrac{7}{5}$
Work Step by Step
The Trigonometric Identities are defined as:
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{5 \sqrt {74}}{74}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-7 \sqrt {74}}{74}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{-5}{7}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{\sqrt{74}}{5}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=-\dfrac{\sqrt {74}}{7}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=-\dfrac{7}{5}$