Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 13, Trigonometric Ratios and Functions - 13.4 Evaluate Inverse Trigonometric Functions - 13.4 Exercises - Quiz for Lessons 13.3-13.4 - Page 880: 2

Answer

$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{5 \sqrt {74}}{74}$ $\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-7 \sqrt {74}}{74}$ $\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{-5}{7}$ $\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{\sqrt{74}}{5}$ $\sec \theta=\dfrac{Hypotenuse}{Adjacent}=-\dfrac{\sqrt {74}}{7}$ $\cot \theta=\dfrac{Adjacent}{Opposite}=-\dfrac{7}{5}$

Work Step by Step

The Trigonometric Identities are defined as: $\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{5 \sqrt {74}}{74}$ $\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{-7 \sqrt {74}}{74}$ $\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{-5}{7}$ $\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{\sqrt{74}}{5}$ $\sec \theta=\dfrac{Hypotenuse}{Adjacent}=-\dfrac{\sqrt {74}}{7}$ $\cot \theta=\dfrac{Adjacent}{Opposite}=-\dfrac{7}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.