Answer
$\sin \theta=\dfrac{\sqrt {115}}{14}
$
$\cos \theta=\dfrac{9}{14}$
$\tan \theta=\dfrac{\sqrt {115}}{9}$
$\csc \theta=\dfrac{14 \sqrt {115}}{115}$
$\sec \theta=\dfrac{14}{9}$
$\cot \theta=\dfrac{9 \sqrt{115}}{115}$
Work Step by Step
The Trigonometric Identities can be defined as:
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{\sqrt {115}}{14}
$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{9}{14}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{\sqrt {115}}{9}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{14}{\sqrt {115}}=\dfrac{14 \sqrt {115}}{115}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=\dfrac{14}{9}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=\dfrac{9}{\sqrt{115}}=\dfrac{9 \sqrt{115}}{115}$