Answer
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{24}{26}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{10}{26}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{24}{10}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{26}{24}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=\dfrac{26}{10}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=\dfrac{10}{24}$
Work Step by Step
Use the Pythagorean Theorem to find the Hypotenuse. $Hypotenuse=\sqrt {24^2+10^2}=\sqrt {576+100}=26$
$\sin \theta=\dfrac{Opposite}{Hypotenuse}=\dfrac{24}{26}$
$\cos \theta=\dfrac{Adjacent}{Hypotenuse}=\dfrac{10}{26}$
$\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{24}{10}$
$\csc \theta=\dfrac{Hypotenuse}{Opposite}=\dfrac{26}{24}$
$\sec \theta=\dfrac{Hypotenuse}{Adjacent}=\dfrac{26}{10}$
$\cot \theta=\dfrac{Adjacent}{Opposite}=\dfrac{10}{24}$