Answer
$\dfrac{\sqrt{65}}{4}$
Work Step by Step
We need to use the Pythagorean Theorem in order to solve $y$ such that $r^2=x^2+y^2 \implies y=\sqrt {r^2-x^2}$
$y=\sqrt{(9)^2-(4)^2}=\sqrt{65}$
Since, $\tan \theta=\dfrac{Opposite}{Adjacent}=\dfrac{y}{x}$
Thus, $\tan \theta=\dfrac{\sqrt{65}}{4}$