Answer
See below
Work Step by Step
From part a, we found that $a_1=1\\a_2=2\\a_3=2^2\\a_4=2^3\\a_5=2^4\\a_6=2^5$
Hence, the explicit rule is $a_n=a^{n-1}$
A recursive rule is $a_1=1\\a_n=2a_{n-1}$
since $a_2=2=2\times1=2a_1\\a_3=2^2=2\times2=2a_2\\a_4=2^3=2\times2^2=2a_3$