Answer
$\dfrac{137}{60}$
Work Step by Step
Here, we have $\sum_{i=2}^{6} \dfrac{1}{n-1}=\dfrac{1}{2-1}+\dfrac{1}{3-1}+\dfrac{1}{4-1}+\dfrac{1}{5-1}+\dfrac{1}{6-1}$
or, $=\dfrac{1}{2}+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}$
or, $=\dfrac{1}{2} \times \dfrac{60}{60}+\dfrac{1}{2} \times \dfrac{30}{30}+\dfrac{1}{3} \times \dfrac{20}{20}+\dfrac{1}{4} \times \dfrac{15}{15}+\dfrac{1}{5} \times \dfrac{12}{12}$
or, $\times \dfrac{60+30+20+15+12}{60}=\dfrac{137}{60}$