Answer
False.
See a counterexample below.
Work Step by Step
This is false, because, for example,
$(a_{1}+a_{2})^{2}=a_{1}^{2}+2a_{1}a_{2}+a_{2}^{2}\neq a_{1}^{2}+a_{2}^{2}$,
(if neither term is zero)
So, for a counterexample, take
$n=2, k=2,a_{1}=1,a_{2}=2$
LHS = $1^{2}+2^{2}=1+4=5$
RHS = $(1+2)^{2}=3^{2}=9$
Since $LHS\neq RHS,$ the statement is false.