Algebra 2 (1st Edition)

Published by McDougal Littell
ISBN 10: 0618595414
ISBN 13: 978-0-61859-541-9

Chapter 12 Sequences and Series - 12.1 Define and Use Sequences and Series - 12.1 Exercises - Problem Solving - Page 799: 63

Answer

First five terms: $\quad 60^{\circ},\ 90^{\circ},\ 108^{\circ},\ 120^{\circ},\ 128.57^{\circ}$ $T_{n}=180(n-2)$ $T_{12}=1800^{\circ}$

Work Step by Step

The first regular polygon is an equilateral triangle (n=3): $a_{3}=\displaystyle \frac{180(3-2)}{3}=60^{\circ}$ $a_{4}=\displaystyle \frac{180(4-2)}{4}=90^{\circ}$ $a_{5}=\displaystyle \frac{180(5-2)}{5}=108^{\circ}$ $a_{6}=\displaystyle \frac{180(6-2)}{6}=120^{\circ}$ $a_{7}=\displaystyle \frac{180(7-2)}{7}=(\frac{900}{7})^{\circ}\approx 128.57^{\circ}$ The total measure of interior angles is: (number of vertices)$\times$(measure of an interior angle) $T_{n}=a_{n}\displaystyle \cdot n=\frac{180n(n-2)}{n}$ $T_{n}=180(n-2)$ So for n=12: $T_{12}=180(12-2)=1800^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.