Answer
$\displaystyle \sum_{n=1}^{\infty}(7n-4)$
Work Step by Step
Note the common difference between terms
$a_{1}=3$
$a_{2}=10=a_{1}+7$
$a_{3}=17=a_{2}+7=a_{1}+2(7)$
$a_{4}=24=a_{3}+7=a_{1}+3(7)$
$a_{5}=31=a_{4}+7=a_{1}+4(7)$
$...$
$a_{n}=3+7(n-1)=3+7n-7=7n-4,$
Beginning with n=1 (lower limit) and never ending (no upper limit)
Sum = $\displaystyle \sum_{n=1}^{\infty}(7n-4)$