Answer
See below.
Work Step by Step
Since the ordering doesn't matter in the selection, we use combinations.
$_nP_r=\frac{n!}{(n-r)!}$, hence here: $_{12}P_2=\frac{12!}{(12-2)!}=\frac{12!}{10!}=12\cdot11=132$
We know that $_nC_r=\frac{n!}{r!(n-r)!}$.
Hence $_{280}C_5=\frac{280!}{5!275!}=13836130056$