Answer
See below
Work Step by Step
Row 0: $1$
Row 1: $1+1=2$
Row 2: $1+2+1=4$
Row 3: $1+3+3+1=8$
Row 4: $1+4+6+4+1=16$
Row n: $\sum=_nC_0+_nC_1+_nC_2+nC_3+...+nC_n
\\=_nC_01^n1^0+_nC_11^{n-1}1+_nC_21^{n-2}1^2+_nC_11^{n-3}1^3+..._nC_n1^01^n\\=(1+1)^n\\=2^n$