Answer
$s=-1, -\frac{6}{5}$
Work Step by Step
Given:$\dfrac{s}{3s+2}+\dfrac{s+3}{2(s-2)}=\dfrac{-2s}{(3s+2)(s-2)}$
Need to find least common denominator(LCD).
LCD: $2(3s+2)(s-2)$
$\dfrac{2s(s-2)}{2(3s+2)(s-2)}+\dfrac{(s+3)(3s+2)}{2(s-2)(3s+2)}=\dfrac{-2s .2 }{2(3s+2)(s-2)}$
$2s^2-4s+11s+6+3s^2+4s=0$
$5s^2+11s+6=0$
$5s^2+5s+6s+6=0$
$(s+1)(5s+6)=0$
Hence, $s=-1, -\frac{6}{5}$