Answer
Axis of symmetry: x=2
Vertex: (2,13)
Work Step by Step
$$y=−3x^2+12x+1$$
The standard form for a quadratic equation is
$$y=ax^2+bx+c $$
So a= -3, b= 12, and c= 1
Axis of symmetry:
The formula for axis of symmetry is
$$x=−b/2a$$
$$x=−(12)/2(−3)$$
$$x=−12−6$$
$$x=2$$
Vertex:
Plug in the x value of the axis of symmetry to find the y value of the vertex.
$$y=−3^x2+12x+1$$
$$y=−3(2)^2+12(2)+1$$
$$y= -12 + 24 + 1$$
$$y= 13$$
The vertex is (2,13)