Answer
$m^{\frac{3}{4}}.n^{\frac{1}{2}} \times m^{\frac{1}{2}}n^{\frac{1}{2}}=m^{\frac{5}{4}}.n$
Work Step by Step
$m^{\frac{3}{4}}.n^{\frac{1}{2}} \times m^xn^y=m^{\frac{5}{4}}.n$
$m^{(\frac{3}{4}+x)}.n^{(\frac{1}{2}+y)}=m^{\frac{5}{4}}.n^1$
Multiply the powers with the same base.
$\frac{3}{4}+x=\frac{5}{4}$
$x=\frac{1}{2}$
and $\frac{1}{2}+y=1$
$y=\frac{1}{2}$
Therefore, the completed equation is:
$m^{\frac{3}{4}}.n^{\frac{1}{2}} \times m^{\frac{1}{2}}n^{\frac{1}{2}}=m^{\frac{5}{4}}.n$