Answer
The answer is 141$m^{-2}$, or $\frac{141}{m^{2}}$
Work Step by Step
To solve the expression:
$\frac{6}{m^{2}}$ + $\frac{5m^{-2}}{3^{-3}}$ = $\frac{6}{m^{2}}$ + $\frac{5\times3^{3}}{m^{2}}$ = $\frac{6+(5\times27)}{m^{2}}$ = $\frac{6+135}{m^{2}}$
= $\frac{141}{m^{2}}$ or 141$m^{-2}$