Answer
Take, for instance, $a=\displaystyle \frac{2}{3}$
$\begin{array}{rllrllrll}
a^{-1} & =\dfrac{1}{a^{1}} & & a^{-2} & =\dfrac{1}{a^{2}} & & a^{-3} & =\dfrac{1}{a^{3}}\\\\
& =\dfrac{1}{\dfrac{2}{3}} & & & =\dfrac{1}{(\dfrac{2}{3})^{2}} & & & =\dfrac{1}{(\dfrac{2}{3})^{3}}\\\\
& =\dfrac{3}{2} & & & =\dfrac{1}{\dfrac{2^{2}}{3^{2}}} & & & =\dfrac{1}{\dfrac{2^{3}}{3^{3}}}\\\\
& & & & =\dfrac{3^{2}}{2^{2}} & & & =\dfrac{3^{3}}{2^{3}}\\\\
& & & & =\dfrac{9}{4} & & & =\dfrac{27}{8}
\end{array}$
Work Step by Step
Given above