Answer
462 different 5-player teams.
Work Step by Step
Use the formula of combination: $_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$. Plug in 11 for N and 5 for R:
$_{n}$C$_{r}$=$\frac{n!}{r!(n-r)!}$
$_{11}$C$_{5}$=$\frac{11!}{5!(11-5)!}$ -simplify like terms-
$_{11}$C$_{5}$=$\frac{11!}{5! (6!)}$ -write using factorial-
$_{11}$C$_{5}$=$\frac{11*10*9*8*7*6*5*4*3*2*1}{(5*4*3*2*1)(6*5*4*3*2*1)}$ -simplify-
$_{11}$C$_{5}$=462
462 different 5-player teams