Answer
$_{9}$P$_{6}$ is greater
Work Step by Step
You have $_{9}$C$_{6}$ and $_{9}$P$_{6}$.Solve to find out which is larger:
A:
$_{9}$C$_{6}$=$\frac{9!}{6!(9-6)!}$ -simplify like terms-
$_{9}$C$_{6}$=$\frac{9!}{6! (3!)}$ -write using factorial-
$_{9}$C$_{6}$=$\frac{9*8*7*6*5*4*3*2*1}{(6*5*4*3*2*1)(3*2*1)}$ -simplify-
$_{9}$C$_{6}$=84
B:
$_{9}$P$_{6}$=$\frac{9!}{(9-6)!}$ -simplify-
$_{9}$P$_{6}$=$\frac{9!}{3!}$ -write using factorial-
$_{9}$P$_{6}$=$\frac{9*8*7*6*5*4*3*2*1}{3*2*1}$ -simplify-
$_{9}$P$_{6}$=60480
$_{9}$P$_{6}$ is greater