Answer
$_{9}$P$_{7}$ is greater
Work Step by Step
You have $_{9}$P$_{7}$ and $_{9}$P$_{2}$.Solve to find out which is larger:
A:
$_{9}$P$_{7}$=$\frac{9!}{(9-7)!}$ -simplify-
$_{9}$P$_{7}$=$\frac{9!}{2!}$ -write using factorial-
$_{9}$P$_{7}$=$\frac{9*8*7*6*5*4*3*2*1}{2*1}$ -simplify-
$_{9}$P$_{7}$=181440
B:
$_{9}$P$_{2}$=$\frac{9!}{(9-2)!}$ -simplify-
$_{9}$P$_{2}$=$\frac{9!}{7!}$ -write using factorial-
$_{9}$P$_{2}$=$\frac{9*8*7*6*5*4*3*2*1}{7*6*5*4*3*2*1}$ -simplify-
$_{9}$P$_{2}$=72
$_{9}$P$_{7}$ is greater