University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 5 - Applying Newton's Laws - Problems - Exercises - Page 160: 5.7

Answer

(a) $T_A = 0.732~w$ $T_B = 0.897~w$ $T_C = w$ (b) $T_A = 2.74~w$ $T_B = 3.35~w$ $T_C = w$

Work Step by Step

(a) $T_C = w$ horizontal components: $T_A~cos(30^{\circ}) = T_B~cos(45^{\circ})$ $T_A = \frac{T_B~cos(45^{\circ})}{cos(30^{\circ})}$ We can replace $T_A$ in the vertical equation. vertical components: $T_A~sin(30^{\circ}) + T_B~sin(45^{\circ}) = w$ $\frac{T_B~cos(45^{\circ})}{cos(30^{\circ})}~sin(30^{\circ}) + T_B~sin(45^{\circ}) = w$ $T_B~(cos(45^{\circ})~tan(30^{\circ})+sin(45^{\circ})) = w$ $T_B = \frac{w}{cos(45^{\circ})~tan(30^{\circ})+sin(45^{\circ})}$ $T_B = 0.897~w$ $T_A = \frac{(0.897~w)~cos(45^{\circ})}{cos(30^{\circ})}$ $T_A = 0.732~w$ (b) $T_C = w$ horizontal components: $T_A~sin(60^{\circ}) = T_B~cos(45^{\circ})$ $T_A = \frac{T_B~cos(45^{\circ})}{sin(60^{\circ})}$ We can replace $T_A$ in the vertical equation. vertical components: $T_B~sin(45^{\circ})- T_A~cos(60^{\circ}) = w$ $T_B~sin(45^{\circ}) - \frac{T_B~cos(45^{\circ})}{sin(60^{\circ})}~cos(60^{\circ})= w$ $T_B~(sin(45^{\circ}) - cos(45^{\circ})~cot(60^{\circ})) = w$ $T_B = \frac{w}{sin(45^{\circ}) - cos(45^{\circ})~cot(60^{\circ})}$ $T_B = 3.35~w$ $T_A = \frac{(3.35~w)~cos(45^{\circ})}{sin(60^{\circ})}$ $T_A = 2.74~w$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.