University Physics with Modern Physics (14th Edition)

Published by Pearson
ISBN 10: 0321973615
ISBN 13: 978-0-32197-361-0

Chapter 3 - Motion in Two or Three Dimensions - Problems - Exercises - Page 96: 3.53

Answer

(a) The initial speed of the ball is $$v_0=42.8 \text{ m/}\text{s}^2$$ (b) Height above the top of the fence is $$H = 42 \text{ m}.$$

Work Step by Step

Let's wrtie down the equations for the horizontal and vertical displacement. We choose the coordinate system as shown in the figure. This will give us two equations in two unknowns ($v_0$ and $t$). And we will use the following initial conditions y-component: $a_y = -g = -9.81$ $m/s^2$, $y_0=0.9$ $m$, $v_{0y}=v_0\sin45^{\circ}$. x-component: $a_x=0,$ $x_0=0,$ $v_{0x}=v_0\sin45^{\circ}$. So we have $y=0.9+\dfrac{\sqrt{2}}{2}v_0t-\dfrac{9.8t^2}{2}$ $x=\dfrac{\sqrt{2}}{2}v_0t$ (a) At time $t_{\text{end}}$ we know that $x(t_\text{end})=L=188$ $m$ and $y(t_\text{end})=0$. $0=0.9+\dfrac{\sqrt{2}}{2}v_0t_{\text{end}}-\dfrac{9.8t_{\text{end}}^2}{2}$ $188=\dfrac{\sqrt{2}}{2}v_0t_{\text{end}}$ For $t_{\text{end}}$ we have $t_{\text{end}}=\dfrac{2\cdot188}{\sqrt{2}v_0}$ and $0 = 0.9 + \dfrac{\sqrt{2}}{2}v_0\cdot \dfrac{2\cdot188}{\sqrt{2}v_0}-\dfrac{9.8}{2}\left(\dfrac{2\cdot188}{\sqrt{2}v_0}\right)^2$ or $v_0=\left(\dfrac{9.8\cdot188^2}{0.9+188}\right)^{1/2}$ $$v_0=42.8 \text{ m/s}$$ (b) We will use the horizontal motion to find the time it takes the ball to reach the fence: $116=\dfrac{\sqrt{2}}{2}\cdot 42.8 \cdot t$ or $t = \dfrac{116 \text{m}}{30.3 \text{m/s}}=3.83 \text{ s}.$ Let's find the vertical displacement of the ball at this t $y=0.9+\dfrac{\sqrt{2}}{2}\cdot42.8\cdot3.83-\dfrac{9.8}{2}\cdot3.83^2 \text{ m}$ $y= 45 \text{ m}$. So Its height then above the top of the fence is $H=45\text{ m} - 3\text{ m}=42 \text{ m}.$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.